0.75 1.20 Weight (kg) 15 ten five 0 four Error (kg) 2 0 -2 -4 10 8 6 4 two 0 Input Voltage(V) 0 five ten 15 20 25 (c) 30 35 40 45 50 0 5 10 15 20 25 (b
0.75 1.20 Weight (kg) 15 ten 5 0 4 Error (kg) 2 0 -2 -4 10 8 6 four 2 0 Input Voltage(V) 0 5 10 15 20 25 (c) 30 35 40 45 50 0 5 10 15 20 25 (b) 30 35 40 Tracking Target 45 50 (a)25 30 Time (sec)Figure 23. Experimental results for the PBWSS with a dynamic bodyweight unloading force ofof 31 Sensors 2021, 21, x FOR PEER Assessment 26 Figure 23. Experimental results for the PBWSS with a dynamic bodyweight unloading force of 20 20 (13.six kg) in 50 s. (a) Tracking trajectory; (b) tracking error; (c) Nitrocefin custom synthesis handle voltage. (13.6 kg) in 50 s. (a) Tracking trajectory; (b) tracking error; (c) manage voltage.25 20 15 ten 5 0(a)Weight (kg)25 (b)Tracking Target 45Error (kg)two 0 -2 -4 10 eight six 4 2 0 0 5 10 15 20 25 (c) 30 35 40 45Input Voltage (V)25 30 Time (sec)Figure 24. Experimental outcomes for the PBWSS having a dynamic bodyweight unloading force Figure 24. Experimental benefits for the PBWSS with a dynamic bodyweight unloading force of of 30 30 (20.four kg) in 50 s. (a) Tracking trajectory; (b) tracking error; (c) handle voltage. (20.four kg) in 50 s. (a) Tracking trajectory; (b) tracking error; (c) handle voltage.30 eight(kg) 20(a)TrackingInput Vo4 2Sensors 2021, 21,25 30 Time (sec)25 ofFigure 24. Experimental benefits for the PBWSS with a dynamic bodyweight unloading force of 30 (20.four kg) in 50 s. (a) Tracking trajectory; (b) tracking error; (c) handle voltage.30 Weight(kg) 20 ten 0 4 Error(kg) two 0 -2 -4 ten eight 6 four two 0 Input Voltage (V) 0 five ten 15 20 0 5 10 15(a)25 (b)Tracking Target 4525 (c)25 30 Time (sec)Sensors 2021, 21, x FOR PEER Assessment 27 of Figure 25. Experimental outcomes for the PBWSS having a dynamic bodyweight unloading force ofFigure 25. Experimental results for the PBWSS with a dynamic bodyweight unloading force of 40 40 kg) in 50 s. 50 Tracking trajectory; (b) tracking error; (c) control voltage. (27.two (27.2 kg) in (a) s. (a) Tracking trajectory; (b) tracking error; (c) control voltage.20 Angle (deg) 10 0 -10 -20 3 Error (deg) 1.5 0 -1.5 -3 one hundred 80 60 40 20 0 0 1 2 three four 5 (c) 6 7 eight 9 10 0 1 2 three four 5 (b) six 7 8 Tracking Target 9 ten (a)Duty Cycle five Time (sec)Figure 26. Tracking response of your interval type-2 fuzzy SC-19220 supplier sliding pulse-width modulation controller Figure 26. Tracking response of your interval type-2 fuzzy sliding pulse-width modulation controller onhip for the PGOS.the PGOS. (a) Output response; (b)error; (c) pulse-width modulation on the right the correct hip for (a) Output response; (b) tracking tracking error; (c) pulse-width modulation control signal. control signal.0 -10 -20 -30 -40 -50 -(a)Angle (deg)Tracking TargetDuty205 Time (sec)Sensors 2021, 21,Figure 26. Tracking response with the interval type-2 fuzzy sliding pulse-width modulation 26 of 29 controller on the proper hip for the PGOS. (a) Output response; (b) tracking error; (c) pulse-width modulation manage signal.0 -10 -20 -30 -40 -50 -60(a)Angle (deg)five (b)Tracking Target 9Error (deg)two 0 -2 -4 100 80 60 40 20 0 0 1 two three four five (c) six 7 8 9Duty Cycle five Time (sec)Sensors 2021, 21, x FOR PEER Review 28 of controller around the ideal knee for the PGOS. (a) Output response; (b) tracking error; (c) pulse-widthFigure 27. Tracking response in the interval type-2 fuzzy sliding pulse-width modulation Figure 27. Tracking response from the interval type-2 fuzzy sliding pulse-width modulation controller around the ideal knee for the PGOS. (a) Output response; (b) tracking error; (c) pulse-width modulation modulation manage signal. handle signal.20 Angle (deg) 10 0 -10 -20 3 Error (deg) 1.five 0 -1.five -3 one hundred 80 60 40 20 0.
Nucleoside Analogues nucleoside-analogue.com
Just another WordPress site